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Econometric Theory, 17, 2001, 1051-1081. Printed in the United States of America. 

ONE-SIDED TESTING FOR ARCH 
EFFECTS USING WAVELETS 

YONGMIAO HONG 
Cornell University 

JIN LEE 
National University of Singapore 

There has been increasing interest recently in hypothesis testing with inequality 
restrictions. An important example in time series econometrics is hypotheses on 
autoregressive conditional heteroskedasticity (ARCH). We propose a one-sided 
test for ARCH effects using a wavelet spectral density estimator at frequency zero 
of a squared regression residual series. The square of an ARCH process is posi- 
tively correlated at all lags, resulting in a spectral mode at frequency zero. In 
particular, it has a spectral peak at frequency zero when ARCH effects are persis- 
tent or when ARCH effects are small at each individual lag but carry over a long 
distributional lag. As a joint time-frequency decomposition method, wavelets can 
effectively capture spectral peaks. We expect that wavelets are more powerful 
than kernels in small samples when ARCH effects are persistent or when ARCH 
effects have a long distributional lag. This is confirmed in a simulation study. 

1. INTRODUCTION 

Hypothesis testing with inequality restrictions is important in econometrics and 
statistics (e.g., Andrews 1998, 2001; Bera, Ra, and Sakar, 1998; Gourieroux, 
Holly, and Monfort, 1982; King and Wu, 1997; SenGupta and Vermeire, 1986; 
Silvapulle and Silvapulle, 1995; Wolak, 1989). An important example in time 
series econometrics is hypotheses on autoregressive conditional heteroskedas- 
ticity (ARCH). Here, parameters of interest are zero if there is no ARCH effect 
and are nonnegative if ARCH effects exist. 

Detecting ARCH effects is important from both theoretical and practical points 
of view. Neglecting ARCH effects may lead to loss in asymptotic efficiency of 
parameter estimation (Engle, 1982); cause overrejection of conventional tests 
for serial correlation (Diebold, 1987; Milh0j, 1985); and result in overparam- 
eterization of ARMA models (Weiss, 1984). Although the one-sided nature of 
ARCH has been long known, most ARCH tests are two-sided. Among them are 
Bera and Higgins (1992), Engle (1982), Gregory (1989), Hong and Shehadeh 
(1999), McLeod and Li (1983), Robinson (1991), and Weiss (1984). 
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correspondence to: Yongmiao Hong, Department of Economics and Department of Statistical Science, Cornell 
University, 492 Uris Hall, Ithaca, NY 14853-7601, USA; e-mail: yh2O@cornell.edu. 
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1052 YONGMIAO HONG AND JIN LEE 

Exploiting the one-sided nature of ARCH is expected to increase power in 
small samples. Engle, Hendry, and Trumble (1985) suggest using the square 
root of a Lagrangian multiplier (LM) test statistic to test ARCH(l). This ap- 
proach, however, could not be generalized to test ARCH(q) for q > 1. Lee and 
King (1993, 1994) are the first to develop one-sided tests for ARCH(q). They 
propose a locally most mean powerful score-based test for ARCH(q). Demos 
and Sentana (1998) consider a convenient one-sided LM test for ARCH(q) in a 
spirit similar to Kuhn-Tucker multiplier tests (Gourieroux et al., 1982). An- 
drews (2001), Lee and King (1993), and Demos and Sentana (1998) consider 
one-sided tests for GARCH(l,l). Simulation studies show that these tests out- 
perform two-sided tests (e.g., Engle, 1982) in finite samples, indicating non- 
trivial gains of exploiting the one-sided nature of ARCH. 

Hong (1997) recently proposed a one-sided ARCH test by observing that the 
spectral density of a squared regression residual series is uniform when there is 
no ARCH effect and is larger than the uniform density at frequency zero when- 
ever ARCH effects exist. Hong (1997) uses a kernel method. The test is shown 
to perform reasonably well in comparison with some popular one-sided and 
two-sided ARCH tests. 

It is well known that in finite samples kernels tend to underestimate the spec- 
tral density wherever there is a mode, even if a finite sample optimal band- 
width is used (Priestley, 1981). Kernels are not an ideal tool in capturing 
nonsmooth spectral features. In the present context, the one-sided nature of 
ARCH implies that the square of a linear ARCH process is positively corre- 
lated at all lags, resulting in a spectral mode at frequency zero. In particular, 
the squared series has a spectral peak at frequency zero when ARCH effects 
are persistent or when ARCH effects are small at each individual lag but carry 
over a long distributional lag. Examples are nearly integrated generalized auto- 
regressive conditional heteroskedasticity (GARCH) and fractionally integrated 
GARCH processes (Baillie, Bollerslev, and Mikkelsen, 1996). In these situa- 
tions, kernels cannot be expected to perform well in small and finite samples. 

The recent development of wavelet analysis provides a new approach to con- 
structing a potentially more powerful one-sided test for ARCH effects. Wave- 
lets are a new mathematical tool developed over the last decade. As a joint 
time-frequency decomposition method, wavelets can effectively capture signif- 
icantly spatially inhomogeneous features (e.g., Donoho and Johnstone, 1994, 
1995a, 1995b; Donoho, Johnstone, Kerkyacharian, and Picard, 1996; Gao, 1993; 
Neumann, 1996; Wang, 1995). Here, we propose a one-sided test for ARCH 
effects using a wavelet spectral density estimator. Wavelets are expected to be 
more powerful than kernels in small samples when there exist persistent ARCH 
effects. Besides ARCH, spectral peaks may arise as a result of strong depen- 
dence, seasonality, and business cycles. Therefore, our approach might have 
potential applications to testing a broad range of other hypotheses in economet- 
rics. This paper merely provides an example to illustrate how wavelets can be 
used to develop powerful econometric procedures. 
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ONE-SIDED TESTING FOR ARCH EFFECTS 1053 

In time series analysis, Gao (1993) uses a Meyer wavelet to estimate the 
spectral density of a stationary Gaussian series. Neumann (1996) considers 
wavelet estimation of the spectral density of a stationary non-Gaussian series. 
Priestley (1996) explores potential applications of wavelets to nonstationary 
time series (see also Subba Rao and Indukumar, 1996). Jensen (2000) uses 
wavelets to estimate a long memory model via maximum likelihood. There 
are also some applications of wavelet analysis to economic and financial time 
series (e.g., Goffe, 1994; Ramsey and Lampart, 1998a, 1998b; Ramsey, Usikov, 
and Zaslavsky, 1995). 

We describe hypotheses of interest in Section 2. Section 3 introduces wave- 
let analysis and its application to spectral analysis. In Section 4, we pro- 
pose our test statistic and derive its asymptotic distribution. Asymptotic 
local power is examined in Section 5. Section 6 presents a Monte Carlo 
study on the proposed test, three existing one-sided tests, and Engle's (1982) 
LM test. Section 7 concludes. All proofs are in the Appendix. Unless 
indicated, all limits are taken as the sample size n -* oo; A* denotes the com- 
plex conjugate of A; JIAll = [tr(A'A)]112 the Euclidean norm of A; C a 
bounded constant that may differ from place to place; and Z {0, ? 1,... } the 
set of integers. 

2. HYPOTHESES 

Throughout, we consider the following data generating process. 

Assumption A.1. {YJ} is a stochastic time series process 

Yt = g(Xt,bo) + et, t = h/2 (2.1) 

where g(.,.) is a known functional form, bo is an unknown finite-dimensional 
parameter vector, Xt is a vector consisting of exogenous and lagged dependent 
variables, and ht is a positive time-varying measurable function of t1,, the 
information set available at period t - 1. The innovation sequence { t} is in- 
dependent and identically distributed (i.i.d.) with E((t) 0, E((2) = 1, and 
E((t) < oc. Moreover, (t is independent of X, for all s ' t. 

This framework is often assumed in the ARCH literature (e.g., Bollerslev, 
Chou, and Kroner, 1992). We make no distributional assumption on innovation 
(t except the existence of its eighth moment. Because E(Et|ftI-) = 0 almost 
surely, {18, I, } is an adapted martingale difference sequence with respect to 
-t-,. Its conditional variance, E(e72 I_Tt_) = ht, is time-varying. Throughout, 
we consider a generalized linear ARCH process 

h00 8 + E 1 /32-7, (2.2) 
1=1 
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1054 YONGMIAO HONG AND JIN LEE 

where /3o > 0, @1=1,81 < oo, and ,61 0 O for all 1 > 1, which ensures h, > 0 (cf. 
Drost and Nijman, 1993; Nelson and Cao, 1992). One example is Engle's (1982) 
ARCH(q) process: 

q 

h= I30 + E (2.3) 

Another example is Bollerslev's (1986) GARCH(p,q) process: 

q p 

=Yo+? E 21 + y 1ht-1, (2.4) 
1=1 

whose coefficient f,l, which is a function of {?a,, yi}, decays to 0 exponentially 
as 1 -- oo. The class (2.2) also includes fractionally integrated GARCH pro- 
cesses, whose coefficients /31 -- 0 as 1 -e oo at a slow hyperbolic rate (e.g., 
Baillie et al., 1996). 

Under (2.2), the null hypothesis of no ARCH effect can be stated as 

1H[o:31=0 foralll=1,2,.... 

The alternative hypothesis that ARCH effects exist is 

HA : /3 ' 0 for all 1 = 1,2,..., with at least one strict inequality. 

The alternative HA is thus one sided. To test this hypothesis, we use a 
frequency domain approach. Letf(wo) be the standardized spectral density of 
{s 2}; i.e., 

00 

f(w) = (27T)-1 , p(l)e-il, w E [- I,IT] (2.5) 
1=-xo 

where p(1) is the autocorrelation function of {182} and i = 1. Note that 
(2.2) implies 

00 

82= /3O + E f8je2 + Vt, (2.6) 
1=1 

where E(vt 1, iI) = 0 almost surely. Under IHo, {s2} = 13o + vt is a white noise 
(in fact {18} is i.i.d. given Assumption A.1), so we have f(0) = (2X)-1. Under 
HA, we have p (l) ? 0 for all 1 E Z and there exists at least one 1 # 0 such that 
p(l) > 0. Thus,f(0) > (2 r)-1 under HA. This forms a basis for constructing a 
consistent one-sided test for 1H1o vs. HA. We can use a consistent estimator A(0) 
for f(0) and check if f(0) > (2r<)-1 significantly. In Hong (1997), a kernel 
method is used. In the subsequent discussion, we use a wavelet method. We 
note that this spectral approach can be extended to check whether a nonstation- 
ary time series is a unit root process or a trend-stationary process; see Sec- 
tion 7 for more discussion. 
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ONE-SIDED TESTING FOR ARCH EFFECTS 1055 

3. WAVELET METHOD 

Throughout, we use multiresolution analysis (MRA), introduced in Mallat 
(1989). MRA is a mathematical method to decompose a square-integrable func- 
tion or signal g(.) at different scales. The key of MRA is a mother wavelet 
function q/ (.). 

Assumption A.2. qh: R -- R is an orthonormal mother wavelet such 
that f?iqj(x)dx = 0, f%lj74(x)ldx < oo, fZi0f2(x)dx 1, and 
f Of(x)qf(x - k)dx 0 for all k E 2, k # 0. 

The orthonormality of ql(.) implies that the doubly infinite sequence {f'jk(')} 

constitutes an orthonormal basis for L2(R), where 

jk(X) = 2 j/2 (2ix- k), j,k E 2. (3.1) 

This sequence is obtained from a single mother wavelet q1 (.) by dilations and 
translations. The integers j and k are called the dilation and translation param- 
eters. Intuitively, j localizes analysis in frequency and k localizes analysis in 
time (or space). This joint time-frequency decomposition of information is the 
key feature of wavelet analysis, explaining why wavelets are attractive for ap- 
proximating nonsmooth functions. We note that the dilation factor could differ 
from 2, but "2" ensures the L2-invariance that fC Xxqk(x)dx f= , b2(x)dx. 
Often q(&) is well localized (i.e., f(x) -e 0 sufficiently fast as x -> oo), so 
qIjk(*) is effectively nonzero only around an interval of width 2-' centered at 
k/2i. 

The mother wavelet /'(-) can have bounded support. An example is the Haar 
wavelet: 

1 
1 if 0<x 2 

2' 

(x)= -1 if - x<01 (3.2) 
2 

0 otherwise. 

Compact support ensures that t' (.) is well localized in time domain. Daubechies 
(1992) shows that for any nonnegative integer D, there exists an orthonormal 
compact supported wavelet whose first D moments vanish. The mother wave- 
let q/ (-) can also have infinite support, but it must decay to 0 sufficiently fast at 
oo. An example is the Littlewood-Paley (or Shannon) wavelet i/i(.), which is 
defined via its Fourier transform 
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1056 YONGMIAO HONG AND JIN LEE 

where 1(.) is the indicator function. Other examples include the Franklin wave- 
let, Lemarie-Meyer wavelets, and spline wavelets. See, e.g., Hernandez and 
Weiss (1996). 

For any g(.) E L2(R), there exists a wavelet representation 

g(X) = E z ajk qjk(X), x E R, (3.4) 
jE7 kEZ 

where the wavelet coefficient 

0x 

ajk f g(x)t/jk(x)dx (3.5) 

(cf. Mallat, 1989; Daubechies, 1992). Given the localization property of f(), 
ajk basically depends on the local property of g(.) on an interval of width 2-' 
centered at k/2j. This differs from the Fourier representation, where each Fou- 
rier coefficient depends on the global property of g(-). An essential feature of 
wavelet analysis is that wavelets, in an "automatic manner," evaluate high fre- 
quency components of g(.) on small intervals and low frequency components 
of g(.) on large intervals. Consequently, they can effectively represent non- 
smooth functions with a relatively small number of wavelet coefficients. 

To represent the standardized spectral density f(.) of {82}, which is 27T- 
periodic and thus is not square-integrable on IR, we need to periodize the wave- 
let basis {ijk(')} via 

'Pjk(OJ) = (277)-/2 z 71 jjk ( 2 +M ) oCR, (3.6) 

which is 2Tr-periodic. With these periodic orthonormal bases for L2L-IT, 7T], 

we can write 

cc 2j 

f(w) = (27T)1+ a E jk/tjkI' &jE), [- , 7], (3.7) 
j=Ok=1 

where the wavelet coefficient 

rv (aJk 7fw( 1)tk (w())dw@. (3.8) 

See Lee and Hong (2001) and Hong (2001) for more discussions. 
Now, we denote the Fourier transform of qf (.) by 

0x 

(z) = (2r)Y/2f (x)e i-dx, z E R. (3.9) 

Assumption A.2 ensures that qf(Q) exists and is continuous almost everywhere 
in R, with I(Z)Z ? C, (-z) = *(z),(O) = 0, and fTccKI(Z)I2dz = 1. By 
Parseval's identity, we can express the wavelet coefficient of (3.8) as 
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ONE-SIDED TESTING FOR ARCH EFFECTS 1057 

axjk = (2'n)-1 E p(l)'Pk(l), (3.10) 
I 0-oo 0 

where "4jk(*) is the Fourier transform of Pjk(.); i.e., 

'rX 

In (3.11) the second equality follows from (3.6) and a change of variable. Note 
that the translation parameter k is converted into a "modulation," i.e., the multi- 
plication of an exponential. This is a natural consequence of the Fourier trans- 
form of convolution. 

We impose an additional assumption on i('). 

Assumption A.3. |*(z) ' Cmin{|z|K,(l + jzj)T} for some K > 0 and 

T>l. 

This requires that qf(r) have some regularity (i.e., smoothness) at 0 and 
sufficiently fast decay at oo. The condition I 

A+(Z) | c lz is effective as 
z -* 0, where K governs the degree of smoothness of q (.) at 0. If 
fx(I + IxIv) Ii(x)Idx < oo for some v > 0, then I &(z) ' ClzIK for K = 

min(v,l) (cf. Priestley, 1996). When q1(-) has first D vanishing moments 
(i.e., f x rl (x)dx = 0 for r = 0,..., D - 1), we have I A/l(z) I c C I z I D as 
z - 0. On the other hand, the condition Ifr(z)l ' C(1 + jzj)-T is effective as 
z - oo. This holds trivially for the so-called band-limited wavelets, whose 
q/(Q)'s have compact supports. 

Most commonly used wavelets satisfy Assumption A.3. Examples are 
Daubechies's (1992) compactly supported wavelets of positive order, the 
Franklin wavelet, Lemarie-Meyer wavelets, Littlewood-Paley wavelets, and 
spline wavelets. Assumption A.3 rules out the Haar wavelet, however, because 
its (z) -ie iz/2 sin2(z/4)/(z/4) -* 0 at a rate of I z I -l only. 

To obtain a feasible wavelet estimator of f(0), we use the estimated regres- 
sion residual 

A 

where b is an estimator of bo. We impose the following conditions on g(., 
and b. 

Assumption A.4. 

(i) For each b E B, where B is a finite-dimensional subset, g(., b) is a measurable 
function of Xt E itl 

(ii) g(X,,.) is twice continuously differentiable with respect to b in an open 
convex neighborhood lBo of bo almost surely, with lim ,,j{n-1 En I E X 
supbO |0 (aa/b)g(X,, b) 4} 1< 0 and limn>00{n-1 En21 E SUpbEa0 11 (a2/1abab') x 
g(Xt,b) 2} < oC. 
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1058 YONGMIAO HONG AND JIN LEE 

Assumption A.5. n1/2 (b - bo) = Op(1). 

We permit but do not require that b be the ordinary least square (OLS) or 
quasi-maximum likelihood estimators (e.g., Lee and Hansen, 1994; Lums- 
daine, 1996). 

Now, define the sample autocorrelation function of the squared residual se- 
ries {E} 

pA(l) R(l)/R(O), / = 0,?1,.. ? ,?(n - 1), (3.13) 

where the sample autocovariance of {E} 

n 

R(l) n Etl E ' (8/f2 t)? o1f-1 (3.14) 
t=lll+l 

with 62 = nl Et= 8. A wavelet spectral estimator forf(0) can be given as 

J 2i 

f(0) = (2Xr)Y + E & ajk (O) (3.15) 
j=O k=l 

where the empirical wavelet coefficient 

('iT n-i 

ajk J w(0)*jk((w)d(o = (27T)-1/2 : pM(l)j(l) (3.16) 
Tr 1=1-n 

with I(w)) = (27rn) t=IE e 2 the periodogram of {87}. For compactly 
supported wavelets 0(/), 'jk(.) in (3.6) is a sum of finite terms, so the first 
expression of a^jk in (3.16) is efficient to compute. Alternatively, for band- 
limited wavelets (whose frQ()'s have compact supports), the second expression 
of a'k is efficient to compute. 

The integer J is called the finest scale parameter. It corresponds to the high- 
est resolution level used in the wavelet approximation. Given each J, there are 
in total 2j+ 1 - 1 empirical wavelet coefficients used in f(0). To reduce the bias 
of!(0), we must let J Jn -4 - ?? as n -X oc. To ensure that the variance of f(0) 
vanishes, however, 2J+l - 1 must grow more slowly than n. Thus, we need to 
choose J properly to balance the bias and variance. Although J is a smoothing 
parameter, it cannot be viewed as a lag truncation parameter, because even if 
J = 0 the empirical wavelet coefficient aJk is still a weighted sum of all n - 1 
sample autocorrelations {p (1)}7_I provided fr (.) has unbounded support. We 
will provide proper conditions on J to ensure that the proposed test is well 
behaved. 

The estimator f(0) is essentially a consistent long-run variance estimator 
for {82}. Long-run variance-covariance estimation is important in time series 
econometrics. The existing popular long-run variance-covariance estimators are 
kernel-based (cf. Andrews, 1991; Newey and West, 1987). Our approach pro- 
vides an alternative. It is expected to perform better in finite samples when 
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ONE-SIDED TESTING FOR ARCH EFFECTS 1059 

data exhibit strong autocorrelation, which generates a spectral peak at fre- 
quency zero. See Hong (2001) for more discussion. 

4. TEST STATISTIC AND ITS DISTRIBUTION 

To introduce our test statistic for HI1o, we define the function 

A(z) = 2 1*(z) E tle(z + 2irm), z E 1R1. (4.1) 
m=-00 

Assumptions A.2 and A.3 imply that A(.) is continuous almost everywhere in 
1R, A(0) = 0, and IA(z)I C C. Note that the tail behavior of A(.) is governed by 
I(0), because m_ o/(z + 2irm) is 27--periodic. We impose a condition on 

Assumption A.6. A: R 11- IR is square-integrable. 

Most commonly used wavelets satisfy this assumption. Because 8(z) 

&(-z) given Assumption A.2, the condition that A(.) is real-valued implies 
A(-z) = A(z). 

Our test statistic for IHio vs. 1H1A is defined as 

Sn(J) = VJ1/2(J)n11/27[f(0) - (27T)- ] J E Z (4.2) 

where the asymptotic variance estimator 

n-1 _ 2 

VnWJ = : (I1-I/n) E, A (2,w112) .(4.3) 
1=1 j=O 

The factor 1 - I/n is a finite sample correction; it could be replaced by unity. 
The statistic Sn(J) is applicable for both small J (i.e., J is fixed) and large J 

(i.e., J Jn -- oc as n -* oo). For (and only for) large J, we could also use the 
statistic 

Srn(J)-=(n/2J)1/2Vo1/2 
7 [ (O) -(27)-1], (4.4) 

where 

r2-, 

vo I F lr(z) 2dz (4.5) 

and 

F (z) = f E (z + 2m7T). (4.6) 
m=-00 

This statistic has the same null asymptotic distribution as Sn(J) when J is large, 
because 2-jVn(J) -- V0 as J -- oo (see Lemma A.2 in the Appendix). It is 
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1060 YONGMIAO HONG AND JIN LEE 

simpler to compute than Sn(J) but may have less desirable sizes in finite sam- 
ples, especially when J is small. 

THEOREM 1. Suppose that Assumptions A.1-A.6 hold and 2j/n -< 0. Then 
under Ho 

Sn ( J) _> dN (0, 1) . 

Both small and large (i.e., fixed and increasing) finest scales J are allowed 
here. Thus, the choice of J has no impact on the null limit distribution of Sn(J), 
as long as 2J grows more slowly than the sample size n. Of course, it may have 
impact on the finite sample distribution of Sn(J), and it is expected to signifi- 
cantly affect the power of Sn(J) under HA. We will examine the impact of the 
choice of J in simulation. We note that because Sn(J) is a one-sided test, it is 
appropriate to use upper-tailed N(0, 1) critical values. The critical value at the 
5% level, e.g., is 1.645. 

5. ASYMPTOTIC LOCAL POWER 

We now consider a class of generalized linear local alternatives 

2in(anh= ok0[1 (aan 31(e271- 1) (5.1) 

where /81 ? 0,E' 1,/3 < oo, and an 0 governs the rate at which the local 
alternatives converge to lHlo. Without loss of generality we assume 
an K=1,81 < 1 for all n to ensure h, > 0. The class IHn(an) describes all linear 
local ARCH alternatives, including ARCH, GARCH, and fractionally inte- 
grated GARCH processes of known or unknown orders. 

THEOREM 2. Suppose that Assumptions A. ]-A.6 hold. 

(i) Let J E Z be fixed. Define 1s(J) = V(J"2 =1dj(l)/31, where Vo(J) 
, 1= l?dj2(l) and dj(l) = jy_ o A(2ivl/2j). Then under EA (n- 1/2), 

Sn (J) d N[ (J), 1]I 

(ii) Let J oc,22J/n 2 - 0. Define l - VO 2 1131, where VO is as in (4.5). Then 
under IEHn(2 '2/n'12), 

Sn (J) -->N(It ,1). 

Theorem 2(i) implies that with fixed finest scale J, Sn(J) has nontrivial power 
against HIn(aj) with parametric rate aC = n-1/2, provided Y I dj(l),8/1 > 0. It 
has no power when 2=. dj(1),31 = 0, which may occur for a fixed J, because 
di(l) is a local average, depending on J and wavelet fr(.). On the other hand, 
Theorem 2(ii) implies that with J-Jn = - o, Sn(J) has nontrivial power against 
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all linear local ARCH processes in TIs (2J/2/n 1/2). This follows because the 
noncentrality parameter Au > 0 whenever linear local ARCH effects exist (i.e., 
there exists at least one parameter 81 > 0 for some I > 0 in (5.1) with a, = 

2J/2/n 1/2). Hong's (1997) one-sided kernel test also has nontrivial power against 
THIn(an) with an analogous rate. The one-sided tests of Lee and King (1993) 
and Demos and Sentana (1998) may not have nontrivial power against IHnI(an) 
for any rate, because they are interested in testing a parametric ARCH(q) for 
fixed q or GARCH(,J). The one-sided tests for GARCH(l,I) of Lee and 
King (1993) and Demos and Sentana (1998) numerically coincide with their 
tests for ARCH(1), respectively. The extension to testing GARCH(p,q) for 
p,q > 1 is more difficult, because some parameters do not lie on the bound- 
ary of the parameter space (cf. Lee and King, 1993; Demos and Sentana, 1998). 
In addition to the nontrivial power against HEI(2j/2/n 1/2), the Sn(J) test is also 
convenient to use because it does not requires formulating an alternative model. 
For example, there is no need to specify the order of an ARCH, a GARCH, or 
a fractionally integrated GARCH model. 

The ability of Sn(J) to detect IHn(2j/2/n 1/2) is desirable when no prior infor- 
mation about the alternative is known. This is, however, achieved at the price 
that Sn(J) can detect IHIn(a,) with a rate of an - 2J/2/n1/2, which is slower than 
the parametric rate n-1/2 because J -e oo. Nevertheless, this may not be taken 
too literally in practice. For example, if 2J oc (ln n)2, we have an oc n-1/2 ln(n), 
which is only slightly slower than n- /2. We note that in other contexts, some 
consistent nonparametric tests allow using a fixed smoothing parameter and 
are thus able to detect local alternatives with parametric rate n-1/2. An exam- 
ple is the class of consistent kernel-based specification tests considered by Fan 
and Li (2000), who show that Bierens-type consistent integrated conditional 
moment tests for model specification can be viewed as a kernel-based test with 
a fixed bandwidth or vice versa. See Fan and Li (2000) for more discussion. 

It should be emphasized that the ability of Sn(J) to detect all linear local 
ARCH processes in ILIn(2j/2/n 1/2) does not mean that rejecting 1HFo will accept a 
linear ARCH alternative. In fact, with J -X co as n -o oc, S,(J) will have power 
against all linear and nonlinear ARCH processes wheneverf (0) > (2T)-l. Thus, 
it may be better to interpret Sn(J) as a test for conditional homoskedasticity 
(E( ? I4_) = o-2 for some o-2 almost surely) versus general conditional het- 
eroskedasticity (P[E(E21_TI_) =2] ' 1 for all u2). Of course, it may be 
noted that Sn(J) has no power against nonlinear ARCH processes whose f(0) = 

(2T)-1/2. This may occur, e.g., if h, follows a tent map process. 
Although the choice of J has no impact on the null limit distribution of 

Sn(J), it may significantly affect the power of Sn(J) in finite samples. It is not 
easy, however, to choose an optimal J that maximizes the power, especially in 
light of the facts that J is not a lag order and that usually no prior information 
on the alternative is available. Therefore, it is desirable to choose J via data- 
driven methods, which are more objective than any arbitrary choice of J or 
any simple "rule of thumb." To allow for this possibility, we consider using a 
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data-dependent finest scale J (say). It can be shown (the proofs are available 
from the authors) that under the conditions that Assumptions A.1-A.6 hold 
and J - J = op(2J/2), where J is nonstochastic and 2J/n -X 0, we have Sn(J) - 
Sn(J) P 0 and Sn(J) _d N(0,1) under 1Ho. Thus, the randomness of data- 
driven J has no impact on the null limit distribution of SJ(), as long as J - 
J ->P 0 at a rate faster than 2-J/2. Note that when J is fixed (J = 0, say), as 
may occur under IlHo for sensible data-driven methods, J -J = op(2-J/2) be- 
comes J - J -?P 0; no rate condition on J is required. 

So far very few data-driven methods to choose J are available in the litera- 
ture. To our knowledge, only Walter (1994) proposes a data-driven J, using an 
integrated mean square error (IMSE) criterion. It is based on the fact that the 

change in IMSE off(.) from J - 1 to J is proportional to lk= IJak, where acJk 

is the empirical wavelet coefficient at a scale J. One starts from J = 0 and 
checks how IMSE changes from J = 0 to J = 1. The grid search is iterated until 
one gets the scale J at that IMSE increases most rapidly. Then, one obtains the 

AA 

finest scale J. This J gives an IMSE that we cannot improve practically by 
further increasing J. Such an increase would increase the variance without a 
corresponding reduction in bias. This method is more suitable for estimation of 
f(.) on [- 7-, 7-] rather than at 0, but it has a great appeal-simplicity. Particu- 
larly, there is no need to use any preliminary estimators for f(0) and its deriv- 
ative. We will use it in our simulation that follows. It should be noted, however, 
that although we conjecture that Walter's algorithm might satisfy the condition 
J - J = op(2-J/) under IHlo where the optimal finest scale is J = 0, there is no 
formal result on the rate of Walter's (1994) J in the literature. 

6. MONTE CARLO EVIDENCE 

We now study the finite sample performance of SJ(J). We use the Franklin 
wavelet and the second-order spline wavelets. The Franklin wavelet is defined 
via its Fourier transform, 

1/ z2sin4 (z/4) I - (2/3)cos2 (z/4) 11/2 
q (z) =(2 r) 

e 
(z/4)2 

1 
[1 - (2/3)sin2(z/2)][1 - (2/3)sin 2(z/4)]J 

(6.1) 

For the second-order spline wavelet, its Fourier transform 

sin6 (z/4) [P(z/4 + ir/2)12 
(z) -(2ir) l/2ie iz/2 (6.2) qj () (2iT)'1 e 

(z/4)3 P(z/2)P(z/4) 

where P(z) = I cos2(2z) + 3 cos(2z) + A. The tests are denoted as 
SI and S2. 

To examine the impact of the choice of finest scale J, we consider J = 0,1,2,3 
for each sample size n, which corresponds to using 2J+1 - 1 = 1,3,7,15 empir- 
ical wavelet coefficients. We also use a data-driven J via Walter's (1994) algo- 
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rithm. We choose the finest scale J for which the change in IMSE from J to 
J + 1 exceeds 100%. 

We compare S1 and S2 with three one-sided ARCH tests-Hong's (1997) ker- 
nel test (denoted K), Lee and King's (1993, 1994) locally most mean powerful 
test (denoted LK), and Demos and Sentana's (1998) one-sided LM test (denot- 
ed DS). We also include Engle's (1982) two-sided LM test (LM). For the ker- 
nel test K, we use the quadratic-spectral kernel and a data-driven bandwidth 
via Andrews's (1991) plug-in method with an ARCH (1) approximating model. 
For the LK test, we use a statistic robust to nonnormality (Lee and King (13), 
1993). The test statistics SI, S2, K, and LK are all asymptotically one-sided 
N(0, 1) under IHo. The DS statistic is the sum of the squared t-statistics of pos- 
itive estimated coefficients in the regression of Et on a constant and the first q 
lags of Et. It has a nonstandard limit mixed x2 distribution; critical values are 
in Demos and Sentana (1998, Table 1). The LM test statistic has a null limit X2 
distribution and is computed as (n - q)R2, where R2 is the squared correlation 
coefficient in the regression of Et on a constant and the first q lags of Et7. For 
LK, DS, and LM, the lag order q has to be chosen a priori. These tests will 
attain their maximal powers when using the optimal lag order, which depends 
on the true alternative. If the alternative is unknown, as often occurs in prac- 
tice, these tests may suffer from power losses when using a suboptimal lag 
order. To examine the effect of the choice of q for these tests, we use q = 1,12. 
The corresponding tests are denoted as LK(l),DS(1),LM(l),LK(12), DS(12), 
and LM(12). 

We consider the data generating process 

Yt X'bo + st, Et = h t =,...,n, (6.3) 

where Xt = (1,mt)', mt = 0.8mt-I + vt,vt - i.i.d. N(0,4), (t 
- i.i.d. N(0,1), 

and bo = (1,1)'. Both {I } and {vtI are mutually independent. We estimate bo 
by OLS. As in Engle et al. (1985), the exogenous variable mt is generated for 
each experiment and held fixed from iteration to iteration. We consider n = 
100, 200, 500, 1,000 for the size of the tests and n = 100, 200 for the power. 
The initial values for &t, t ' 0, are set to be 0, and ht, t ' 0, is set to be 1. To 
reduce the effects of the initial values, we generate n + 1,000 observations and 
then discard the first 1,000 ones. For each experiment, we generate 1,000 iter- 
ations using GAUSS Windows/NT version random number generator. 

We study the size by setting ht = 1. Table 1 reports the size at the 10% and 
5% levels using asymptotic critical values. We first look at the wavelet tests. 
When J = 0,1, both S, and S2 perform reasonably well for all sample sizes, 
with S2 slightly better than SI in most cases. When J = 2,3 (particularly J = 3), 
SI and S2 are undersized when n = 100, 200, but they become reasonable when 
n = 500, 1,000. Walter's algorithm gives reasonable sizes for both SI and S2. 
(In the notes to Tables 1-4, which follow, we report the mean and standard 
deviation of Walter's J.) For the other tests, the sizes of the tests K, LK(1), and 
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TABLE 1. Size at 10% and 5% levels 

n 100 n=200 n =500 n = 1,000 

10% 5% 10% 5% 10% 5% 10% 5% 

SI (Walter) 7.3 4.5 8.2 4.8 10.4 6.0 8.4 4.4 

S1(0) 9.6 5.0 8.6 4.2 9.1 5.1 9.4 5.1 
S(1) 7.7 5.2 6.7 4.1 9.2 6.1 8.3 3.7 
S1 (2) 6.3 3.9 8.1 4.6 8.7 4.4 7.4 4.0 

SI (3) 4.2 2.6 6.5 4.2 8.9 4.6 8.7 3.9 

S2(Walter) 9.0 5.4 8.2 4,2 11.3 6.2 9.1 5.1 
S2(0) 9.9 5.1 8.2 4.0 9.0 5. 1 9.3 4.7 
S2(1) 9.0 5.3 8.1 4.2 10.3 4.8 8.3 4.7 
S2(2) 7.2 4.2 8.6 4.8 9.9 5.0 7.2 3.3 
S2(3) 5.5 2.9 7.7 4.2 9.1 5.1 8.2 4.7 

K 8.4 4.0 7.5 3.5 8.0 4.2 8.5 4.2 

LK(1) 9.8 5.0 8.5 4.0 8.9 5.0 9.3 4.8 
DS(1) 9.9 5.3 8.3 4.1 9.0 5.1 9.4 4.7 
LM(1) 7.8 4.0 8.0 4.3 9.5 4.3 9.1 4.6 

LK(12) 6.3 2.8 6.8 3.0 8.0 4.2 7.3 3.7 
DS(12) 11.6 7.3 11.5 6.7 12.6 7.5 10.8 6.0 
LM(12) 6.1 1.9 7.1 3.2 10.1 5.1 8.8 4.7 

Notes: Model: Y, = I + mt + a1, mz - 0.8mt- + vt,vt - NID(0,4), 8, ,NID(0, 1). Number of iterations= 1,000. 
The mean and standard deviation (in parentheses) of Walter's (1994) J are shown. The SI test: 1.87(1.01), 
2.12(1.07), 2.57(1.20), 2.72(1.28) for n = 100, 200, 500, 1,000, respectively. The S2 test: 1.89(1.02), 2.15(1.06), 
2.56(1.19), 2.77(1.26) for n = 100, 200, 500, 1,000, respectively. 

DS(1) are reasonable for all sample sizes. The tests LK(12) and LM(12) show 
some underrejections, whereas DS(12) tends to overreject slightly except for 
n = 1,000. 

Next, we investigate the power under the following ARCH alternatives: 

ARCH(1): ht = 1l+ p671, 
12 

ARCH(12a): ht= 1 + 8 8 t-2 
1=1 

12 

ARCH(12b): ht= 1 + (13 - 
1=1 

GARCH(1, 1): ht 1 + a62 1 +?Pht-1. 

For ARCH(l), we set / = 0.3, 0.95. ARCH(1) has no sharp peak for f() at 
any frequency. In contrast, ARCH(12a) and ARCH(12b) have a relatively long 
distributional lag, which generates a peak forf(.) at 0. Linearly decaying weights 
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in ARCH(12b) are often considered in the literature (e.g., Engle, 1982). We set e 
= 0.95/12 for ARCH(12a) and /3 = 0.95/ E (1 - 1/13) for ARCH (12b). 

GARCH(1,l) is a workhorse in modeling economic and financial time series. 
When a + /8 < 1, GARCH(1, 1) can be expressed as ARCH(oo) with exponen- 
tially decaying coefficients. We set (a,/8) = (0.3, 0.3), (0.3, 0.65). The latter 
displays relatively persistent ARCH effects, yielding a peak for f(.) at 0. We 
consider the size-corrected power under these alternatives, using the empirical 
critical values obtained from 1,000 replications under 2H1o. 

Table 2 reports the power against ARCH(1). We first look at the wavelet 
tests. Both S1 and S2 have similar power. The choice of J 0 O and in some 
cases the choice of J - 1 give the best power, whereas the choice of J = 3 
gives the smallest power. Walter's algorithm yields power similar to J = 2 in 
most cases. Next, we compare S1 and S2 using Walter's algorithm with the other 
tests. As expected, LK(1) and DS(1) have similar powers and are most power- 

TABLE 2. Size-adjusted power against ARCH(1) at 10% and 5% levels 

,8 - 0.3 13 =0.95 

n-100 n-200 n =100 n-200 

10% 5% 10% 5% 10% 5% 10% 5% 

SI (Walter) 51.1 39.5 58.0 47.3 82.3 75.3 90.8 87.7 
S1(0) 71.4 60.9 90.8 84.9 97.2 94.9 100 100 
SI(1) 64.8 49.3 82.5 74.8 95.1 89.8 99.7 99.3 
Si(2) 47.5 34.0 57.6 46.7 85.5 75.8 96.2 93.6 
SI (3) 32.7 22.7 40.5 31.6 67.5 57.2 84.0 76.1 

S2(Walter) 55.8 43.5 69.3 61.2 87.9 82.2 95.6 93.7 
S2(0) 73.1 61.4 90.8 85.6 97.3 95.2 100 99.9 
S2(1) 70.2 58.6 94.0 93.0 97.5 93.3 100 100 
S2(2) 54.4 42.7 70.3 60.3 91.0 84.8 98.9 97.4 
S2(3) 40.7 29.5 52.9 39.4 79.2 70.2 92.9 87.6 

K 70.8 60.4 88.8 82.7 97.5 94.8 100 99.7 

LK(1) 72.8 62.7 90.8 86.0 97.3 95.4 100 100 
DS(1) 73.1 61.7 90.9 85.7 97.4 95.7 100 99.9 
LM(1) 64.7 56.0 85.8 81.2 95.9 93.4 100 99.2 

LK(12) 24.1 16.0 36.8 27.6 46.4 33.6 73.3 63.1 
DS(12) 40.2 30.4 62.7 54.1 77.5 70.0 94.5 92.1 
LM(12) 35.4 23.8 60.7 50.8 72.5 60.0 92.3 89.4 

Notes: Model: 
Yt 

1 + mt 
+ 

et, 
m, 

0.8mt, 
+ 

vO, Vt 
NID(0,4), 

st = 6,h1'2, 
et-NID(0,1), h, = 13+ 2 

Number of iterations = 1,000. The mean and standard deviation (in parentheses) of Walter's (1994) J are shown. 
(a) (3 0.3: The S1 test: 1.80(0.97), 2.10(1.08) for n = 100, 200, respectively. The S2 test: 1.81(0.97), 2.08(1.08) 
for n = 100, 200, respectively. (b) 3 = 0.95: The SI test: 1.82(1.03), 2.28(1.10) for n = 100, 200, respectively. 
The S2 test: 1.90(1.06), 2.37(1.23) for n = 100, 200, respectively. 
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ful. The kernel test K has power very close to that of LK(l) and DS(1). These 
three tests have better power than LM(1), which has better power than S1 and 
S2. Both SI and S2 suffer from nontrivial power loss when there is no sharp 
spectral peak. The fact that LK(l) and DS(1) are most powerful against ARCH(1) 
is hardly surprising, because they use the optimal lag q = 1. The powers of 
LK(12), DS(12), and LM(12) are substantially smaller. These tests are less pow- 
erful than SI and S2. 

Table 3 reports the power under ARCH(12a) and ARCH(12b). Again, SI 
and S2 have similar power. Now, in contrast to ARCH(1), the choice of J = 3 
gives the best power for SI and S2, whereas J = 0 gives the smallest power. 
Walter's algorithm gives power comparable to the choice of J = 2 in most 
cases. Next, we compare SI and S2 using Walter's algorithm to the other tests. 
Under ARCH(12a), LK(12) has the best power, and it dominates DS(12). (These 

TABLE 3. Size-adjusted power against ARCH(12) at 10% and 5% levels 

ARCH 12(a) ARCH 12(b) 

n =100 n = 200 n= 100 n = 200 

10% 5% 10% 5% 10% 5% 10% 5% 

SI (Walter) 64.0 53.7 84.9 80.5 78.7 69.2 86.6 83.6 
SI (0) 40.5 31.8 70.3 62.2 59.7 49.4 86.6 80.2 
SI (1) 52.3 40.3 83.9 77.6 72.3 58.8 93.8 90.8 
SI (2) 65.5 55.1 90.6 86.4 81.6 72.7 97.0 95.4 
SI(3) 78.4 68.6 96.0 93.5 87.6 83.2 98.1 97.6 

S2(Walter) 60.3 51.4 87.2 84.4 77.3 66.7 91.1 88.9 
S2(0) 36.8 27.7 65.0 53.5 54.1 43.0 80.7 72.6 
S2(1) 47.1 35.1 86.4 84.4 65.9 53.7 95.5 94.5 
S2(2) 58.6 49.9 86.9 81.8 76.7 68.9 95.9 92.8 
S2(3) 73.8 63.3 94.0 91.1 87.4 81.7 98.2 97.1 

K 39.6 32.9 65.1 59.3 57.3 49.7 81.4 76.8 

LK(1) 36.8 29.2 64.6 53.9 53.5 44.6 80.7 72.4 
DS(1) 36.9 28.3 65.1 53.7 53.9 43.4 80.8 72.4 
LM(1) 31.3 25.4 54.1 46.7 46.7 39.0 72.2 65.8 

LK(12) 65.8 59.3 93.0 89.8 72.8 65.7 94.1 92.0 
DS(12) 57.1 46.5 89.8 84.1 67.1 55.6 93.2 89.0 
LM(12) 49.7 41.2 87.0 81.1 60.0 50.6 91.6 88.1 

Notes: Model: Y1, 1 + mt ? Et, mt = 0.8m,-1 + v,, Vt - NID(0,4), St-, ht2, e, - NJD(0,1). ARCH(12a): 
h, = 1 + /8El1-te-1, /3 = 0.95/12. ARCH(12b): h, = 1 + /3I_l(l - 1/13) tej, 6 = 0.95/>1Y(l - 1/13). 
Number of iterations = 1,000. The mean and standard deviation (in parentheses) of Walter's (1994) J are 
shown. (a) ARCH(12a): The S1 test: 2.43(1.16), 3.88(1.36) for n = 100, 200, respectively. The S2 test: 2.50(1.16), 
3.93(1.37) for n = 100, 200, respectively. (b) ARCH(12b): The SI test: 2.62(1.16), 3.95(1.28) for n = 100, 200, 
respectively. The S2 test: 2.70(1.18), 4.07(1.29) for n = 100, 200, respectively. 
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two tests have used the optimal lag order of 12.) The wavelet tests Sj and S2 

have power close to that of LK(12). These three tests have better power than 
the kernel test K. The tests S1 and S2 are slightly better than DS(12) and are 
substantially better than LM(12) for n = 100, although the latter uses the op- 
timal lag of 12. This indicates that wavelets work well when ARCH effects 
have a relatively long distributional lag. Under ARCH(12b), S1, S2, and LK(12) 
have comparable power, and they are more powerful than DS(12), LM(12), K, 
LK(1), and DS(1). 

Table 4 reports the power against GARCH(1,l). When (a,/13) = (0,3, 0.3), 
ARCH effects are relatively weak. For SI and S2, the choice of J 1 gives the 
best power whereas J = 3 gives the smallest power. This is similar to the case 
of ARCH(l). When (a,,3) = (0.3, 0.65), ARCH effects are relatively persis- 
tent. The choice of J = 2 gives the best power for SI and S2, whereas J = 0 
gives the smallest power. This is analogous to the case with ARCH(12a) and 

TABLE 4. Size-adjusted power against GARCH(l,l) at 10% and 5% levels 

(a,8)= (0.3,0.3) (a,/3) = (0.3,0.65) 

n =100 n 200 n =100 n =200 

10% 5% 10% 5% 10% 5% 10% 5% 

SI (Walter) 66.6 55.9 76.6 68.2 85.7 77.9 88.1 86.2 
S1(0) 73.6 65.0 91.6 87.1 79.6 71.0 97.0 94.0 
SI(1) 76.4 63.6 93.0 88.6 88.3 78.9 98.5 97.4 
S1(2) 67.1 54.3 81.8 74.2 90.9 85.4 98.6 98.2 
S1(3) 48.2 38.2 61.5 53.1 88.6 81.7 96.9 96.1 

S2(Walter) 68.1 58.3 83.2 76.6 85.2 77.3 93.6 92.3 
S2(0) 73.3 63.4 91.6 86.2 75.8 66.1 95.3 90.2 
S2(1) 77.4 66.5 97.2 96.1 86.0 77.3 99.0 98.7 
S2(2) 71.3 62.8 88.9 82.1 90.0 85.0 99.0 97.9 
S2(3) 58.1 47.5 76.3 64.9 91.4 86.1 98.2 97.2 

K 75.2 66.5 91.6 88.6 78.8 72.8 95.4 93.9 
LK(1) 73.7 64.4 91.0 86.6 76.1 66.7 95.1 90.4 
DS(1) 73.3 63.8 91.6 86.2 76.2 66.3 95.2 90.4 
LM(1) 66.3 57.8 86.2 82.6 68.3 62.5 90.6 86.3 

LK(12) 35.8 24.3 54.3 43.5 70.0 63.1 92.0 88.9 
DS(12) 46.2 34.0 70.5 61.5 70.4 58.6 94.2 89.3 
LM(12) 41.1 30.6 67.8 59.5 65.3 56.3 93.0 88.7 

Notes: Model: Y= 1 + m, + et, mt = 0.8MtnI + vt, vt - NID(0,4), s = 6, hte2, t tNID(0,1),h,=1+aa l? 
/8h,-. Number of iterations = 1,000. The mean and standard deviation (in parentheses) of Walter's (1994) J are 
shown. (a) (ca,,f) = (0.3,0.3): The SI test: 1.88(0.99), 2.29(1.08) for n = 100, 200, respectively. The S2 test: 
1.94(1.01), 2.33(1.11) for n = 100, 200, respectively. (b) (a,/3) = (0.3,0.65): The St test: 2.42(1.11), 3.45(1.27) 
for n = 100, 200, respectively. The S2 test: 2.52(1.14), 3.58(1.25) for n = 100, 200, respectively. 
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ARCH(12b). Walter's algorithm gives power similar to the choice of J = 1. We 
now compare SI and S2 using Walter's algorithm with the other tests. When 
(a, ,B) = (0.3, 0.3), the kernel test K has the best power, followed closely by 
LK(1) and DS(1), then by SI and S2, and finally by LM(l). Nevertheless, the 
power difference among these tests is marginal. The tests DS(12), LM(12), and 
LK(12) suffer from severe power losses. When (a,13) = (0.3, 0.65), SI and S2 
perform the best among all the tests. They outperform K, which is more pow- 
erful than LK(1), DS(1), and LM(1). The powers of LK(12), DS(12), and 
LM(12) are smaller than those of LK(1), DS(1), and LM(1), respectively, but 
the differences are rather small. It appears that using a long lag order may not 
suffer from severe power loss when ARCH effects are persistent. 

In summary, we make to following observations. (1) The wavelet tests, SI 
and S2, have similar size and power in almost all the cases. The choice of mother 
wavelet q4(-) is not important for both the size and the power. The choice of 
finest scale J is not important for the size (unless J is large and n is small), but 
it significantly affects the power. Walter's algorithm yields an objective finest 
scale J that yields reasonable power. (2) The powers of the one-sided kernel 
and wavelet tests depend on the alternative. When ARCH effects are less per- 
sistent, the kernel test is more powerful than the wavelet tests. When ARCH 
effects are relatively persistent, the wavelet tests outperform the kernel test. 
(3) The tests of LK, DS, LM attain their own maximal powers when using the 
optimal lag order, but they may suffer from severe power loss when using a 
suboptimal lag. Under each alternative, the two-sided LM test is always domi- 
nated by some one-sided tests using the same lag order. (4) None of the one- 
sided tests dominates all the others in power for all the alternatives under study. 
When ARCH effects are less persistent, the kernel test has power comparable 
to that of LK(1) and DS(1), which use the correct lag order and are most pow- 
erful. When ARCH effects are relatively persistent, the wavelet tests using 
Walter's algorithm have power close to or even better than that of LK and DS 
using the optimal lag orders. (5) The kernel and wavelet tests using data-driven 
methods do not require the knowledge of the alternative. 

The fact that the kernel test K has good power against less persistent ARCH 
effects whereas the wavelet tests SI and S2 have good power against relatively 
persistent ARCH effects suggests that a suitable Bonferroni procedure that com- 
bines the wavelet and kernel tests may have good power against both persistent 
and less persistent ARCH effects. We consider two simple Bonferroni proce- 
dures, BF1, which combines SI and K, and BF2, which combines S2 and K, 
where both SI and S2 use Walter's algorithm. The simple BF1 procedure works 
as follows. Let P1 and P2 be the smaller and larger asymptotic p-values of test 
statistics {S,, K}. Then one rejects 1H1o at level a if P1 < a/2. The same proce- 
dure applies to BF2. Table 5 reports the size and power of BF1 and BF2 at the 
10% and 5% levels. Both BF1 and BF2 are undersized, as is expected. In spite 
of this, however, they do have all-round good power against all the four alter- 
natives. In particular, they have better power than the wavelet tests SI and S2 
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TABLE 5. Size and power of Bonferroni procedures at 10% and 5% levels 

n = 100 n-200 

BF1 BF2 BFI BF2 

10% 5% 10% 5% 10% 5% 10% 5% 

Size 6.6 3.8 6.8 4.3 6.8 3.5 5.6 3.3 

Power 
ARCH(l):,8 = 0.3 59.4 49.9 60.1 50.9 80.6 72.3 81.4 72.9 
ARCH(l):8 = 0.95 93.4 - 90.0 93.3 90.3 99.5 98.7 99.7 98.9 
ARCH 12(a) 55.0 49.5 54.5 47.9 86.4 83.2 87.3 84.7 
ARCH 12(b) 72.3 65.8 70.5 65.8 94.0 92.4 94.9 93.4 
GARCH(1,1): (0.3,0.3) 69.6 62.5 69.9 63.2 89.2 84.8 89.5 85.9 
GARCH(1,1): (0.3,0.65) 84.3 79.1 84.1 78.8 98.0 97.1 98.2 97.7 

Size-adjusted power 
ARCH(l):,8 = 0.3 66.7 53.7 67.2 55.0 85.6 76.3 86.4 79.5 
ARCH(1):p = 0.95 96.3 91.9 96.4 92.0 99.7 99.2 99.9 99.6 
ARCH 12(a) 60.3 51.5 59.0 50.4 89.1 84.3 89.1 86.7 
ARCH 12(b) 77.4 68.2 76.1 67.7 95.6 92.9 95.8 94.7 
GARCH(1,1): (0.3,0.3) 75.1 66.0 75.8 66.0 91.9 87.0 93.2 88.9 
GARCH(1,1): (0.3,0.65) 87.0 81.6 87.5 80.8 98.0 97.3 99.0 98.0 

Notes: BF1, Bonferroni procedure combining SI and K; BF2, Bonferroni procedure consisting of S2 and K. The 
size-adjusted power of BF1 and BF2 is based on their empirical p-values under Ho. Number of iterations = 1,000. 

when ARCH effects are less persistent, and they have better power than the 
kernel test K when ARCH effects are persistent. It appears that BF1 and BF2 do 
capture the advantages of both wavelets and kernels. We note that the bootstrap 
could be used to obtain an accurate size for the Bonferroni procedures. The 
method in Horowitz and Spokoiny (2001) may be useful here. 

7. CONCLUSION 

We have proposed a one-sided test for ARCH effects using a wavelet spectral 
density estimator at frequency zero of a squared regression residual series. An 
essential feature of ARCH is that the squared series is positively correlated at 
all lags, resulting in a spectral mode at frequency zero. In particular, a spectral 
peak of the squared series arises when ARCH effects are persistent, or when 
ARCH effects are small at each individual lag but carry over a long distribu- 
tional lag. Because the kernel method tends to underestimate peaks, it may not 
be a powerful tool in small samples when ARCH effects are persistent. In this 
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case, wavelets are expected to perform better because they can effectively cap- 
ture spectral peaks. This is confirmed in a simulation study. A Bonferroni pro- 
cedure captures the advantages of both kernel and wavelet approaches. 

Our approach can be extended to check adequacy of various conditional vari- 
ance models. This can be done by using a wavelet spectral density at frequency 
zero of the squared residual series standardized by the conditional variance es- 
timator. The underlying spectral density is uniform when the conditional vari- 
ance model is adequate, but it will be generally larger than the uniform density 
at frequency zero when the conditional variance model is misspecified. We con- 
jecture that parameter estimation in conditional variance models will have no 
impact on the limit distribution of the proposed test for large J. 

Our approach can also be extended to test hypotheses in contexts other than 
ARCH. In nonstationary time series analysis, e.g., it is important to determine 
whether a nonstationary time series is a unit root process or a trend-stationary 
process. Because the spectral density at frequency zero of the first differenced 
series is zero if the time series is a trend-stationary process and is strictly pos- 
itive if it is a unit root process, one can distinguish these two processes by 
testing whether a wavelet spectral density estimator at frequency zero of the 
first differenced series is significantly positive. Another potential application is 
detection of conditional duration effects and evaluation of autoregressive con- 
ditional duration models for irregularly spaced transaction data (cf. Engle and 
Russell, 1998) where the spectral density is also larger than the uniform den- 
sity at frequency zero under the alternative hypothesis. These are left for future 
study. 
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APPENDIX 

To prove Theorems 1 and 2, we first state some useful lemmas. 

LEMMA A.1. Define dj(l) = EJ0A(2fll/2j), 1, J E Z, where A(z) is as in (4.1). 
Then 

(i) dj(O) = O and dj(-l) = dj(l) for all 1, J E Z, J > 0; 
(ii) Idj(l)I - C < oo uniformly in l, J E Z, J > 0; 
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(iii) For any given I ? 7, I 4 0, dj(1) - 1 as J- oo; 
(iv) For any given r ? 1, , d1(l)|r = O(2J) as J,n-oo. 

Proof of Lemma A.1. See Hong and Lee (2000, proof of Lemma A.1). 

LEMMA A.2. Let Vn(J) and V0 be defined as in Theorem 1. Suppose that J - 00, 
2J/n -- 0. Then 2-jVn(J) -* Vo. 

Proof of Lemma A.2. Given the definition of dj(l), we put 

n-i J J n-I 
Vn(J)- E d2(l) = E A(2w1/2j)A(21P121l/2j), 

1=1 p=-Jj=lpl 1=1 

where the last equality follows by reindexing. We shall show 2-JV,(J) -*1 VO, which 
implies 2-jVn(J) -* VO by dominated convergence. Put I I,- oC, I/J - 0. We write 

T7n(J) = Vn (I) + Qln + Q2ns (A.1) 

where 

I J n-I 

Qln- = E , A(2,7l/22)A(21P12i-l/2j), 
p=-Ij=I+I 1=1 

J J n-i 
Q2n = 

Y, Y Y, A(2-g1/2j)A(21P12,7T1/2j). 
1P1=I+lj=1p1 1=1 

For the second term Qln in (A.1), we have as n o co, 

I J 1 n-I 
Qln = 2j Y , 2-(J-i) (27T/2j) E A(27T1/2j)A(21P121Tl/2j) 

p=-Ij=I+l 21r /= 

= 2`+1 E A(z)A(21P1z)dz[1 + o(1)] (A.2) 
P=_00 27T 

by dominated convergence, (27T/2j) 7n- A(271/2i)A(21P127T1/2i) -* foA(z) X 
A(21PIz)dz for any given p as j - oo, and EJ I+1 2 (J-j) - 2 as I -- o, JII - *0. 

Similarly, for the last term in (A.1), we have 

Q2n = o(2j). (A.3) 

Next, for the first term Vn(j) in (A. 1), by the Cauchy-Schwarz inequality, we have 

I I n-I 1 1/2 n-F 1/2 
'n (I) :5 E 2 - JpJ2 1: 2i 2-i 'Y A 2(2,wI/2j) 2-(0-lpl) 'E7 A 2(2,,1/2j-1PI) 

p=-I i=P L 1=1 I1 

oo I 
C2 E 2 PI/2 , 2' C 8C2 2, (A.4) 

p=-xo j=O 
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where we used the fact that for any I > O, j > 0, 

n-i 2V n-1 

2 > A 2(27T/2j) ? 2- C(2iTl/21)2K + 2- C(27r1/2i)2T 
1=1 1-1 ~~~~~~1=24+1 

n 

? C+ C 2- (I + 271/2 ) 

? + 9- f(i xy-2Tdxl 
[< 1+ 

(I 
] 

where the first inequality follows by Assumption A.3 and the last one follows from the 
fact that (1 + X)-2, is decreasing in x > 0. Note that frO (1 + X)-2'dx < o0 given r > 1. 
Collecting (A.1)-(A.4) and I/J -- 0, we obtain 2-jVn(J) -4 2 ' p (2fr)-1 X 

fo? A(z)A(21PIz)dz. Thus, it remains to show VO = 2 Ip=_o, (2 ) -'fo' A (z)A(2 PIz)dz 
where VO is as in (4.5). 

From the definitions of A(.) in (4.1) and F(z) in (4.6), we have A(z) = 

27rt*(z)F(z),A(.) is real-valued and symmetric about 0, and F(.) is 27T-periodic. It 
follows that 

000 

= (2,iT)-1 A(z)A*(21PIz)dz 

r2 
= (2ir)' , f A(z + 217T)A* [2IPI(z + 21k)]dz 

= 27rf { ir*(z + 217T) /[21PI(z + 217r)] F(z)F*(21P1z)dz 

= p,of If(z)12dz= V08P,0, 

where 8p,O 1 if p = 0 and 8p,c = 0 otherwise, and the fourth equality follows from the 
orthogonality condition that 2TrjjEzzqf*(z + 2lvT)qf[2IPi(z + 217T)] = 8p,0 for z C IR 
almost everywhere (cf. Hernandez and Weiss, 1996, (1.4) and (1.5), p. 332; note that the 
Fourier transform fr() there differs from our qfr(.) by a factor of 2i). Hence, we have 
2 P= _(2 ) flo A(z)A(2P Iz)dz = VO. This completes the proof. A 

LEMMA A.3. Let /3(l) be a sequence of autocovariances with l,= j1 (l )l < 00 and 
let dj(l) be defined as in Lemma A.1. Then 7I n d(l ),f3() - ,8 /(1) as J, n - oo. 

Proof of Lemma A.3. We write 

n-1 oo n-I oo 

dj (l)(l)- 1 ,B(lI [dj(l)-1]8(1)- 8(l). (A.5) 
I= 1 I~~=1l 1= l ln. 
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For the second term in (A.5), we have E"0jn83(l)t < ?I= /3(1)I -- 0 given 

j3 (1)1 < co. For the first term in (A.5), we have Ij 1 [dj(l) - l]/(l) - 0 as 
J,n -* oo by dominated convergence, dj(l) - 1 -* 0 for any 1 E Z as J -4 oo, and 
dj(l) - I ? C from Lemma A.1. The desired result follows immediately. 

Proof of Theorem 1. Put Ut 5 1 and R(l) CovV(u, ut,-). Define 

1 J 2i 

AO?)- 2 + Y E ?jk jk (?) (A.6) 
'7J j=O k=O 

where ]jk 5 n- i(j)/R(0),R(1) n-l X 

,11+l utut-111, and +,k(l) - (2i) l/2f 'jk(cw)e--dwt as in (3.11). Note that 
we have abused the notation p5(j) by defining pi(j) R(j)/R(O) rather than p5(j) 
Rk j)/R(0). 

Writing f(0) - (2ir)1 =[(0) - 7(0)] + [7(0) - (2ir)'], we shall prove Theo- 
rem 1 by showing Theorems A.1 and A.2, which follow. 

THEOREM A.1. wl/2(J)nl/2[!(o)-f(o)] > 0. 

THEOREM A.2. Vj1/2(J)n1 24f(O)-(2Tw)1] 3d N(0, 1). 

Proof of Theorem A.1. Because *jk(.) is the Fourier transform of Wjk('), we have 

00 co 
tk(O) = (21T)-1/2 

1 t (h)- (2i)-1/2 E ei2vhk/2'(2i/2i)1/2t(2rh/2i) 
h==-oo h=-oo 

(A.7) 

given (3.11). Moreover, by (3.1 1) and (3.16), we have 

n-I 

ax = (2ir)1/2 
- 

/(1)ei2 lk/2 (27T/2j) /2 (271T/2i). (A.8) 
I=-n 

Collecting (3.15), (A.7) and (A.8), and Lemma A.1 yields 

1 1 
f(0)= + 

n-I J x 2 

X eit27rr(1-h)k/2 (2v/2 j) y, (2v1r/2 j) ,f(2 7rh/2 j) p (1) F~~~~~~~~~~~~ 
I=-1-n L-O h=-oo k1 

1 1 n-I 1 1n- 
_ ?+ d(l)'(1) =- ?- dj(l) (l), (A.9) 27r 2-r 1 2T -7T i-1 

where the second equality follows because by the change of variable I = h + m, we 
have 

J co 2i 

e i2-r(1-h)k12j (27T/2 j) -* (2vl/2j) X (2 7rhl2 j) 
j=-O h=-oo k=1 

J 00 / 2\ 

2E 2 2-i E i2emk/2 f *(2vl/2j)i4[27(l + m)/2i] 
j=O m A \l k-1 / 

= A(2vl/2j) = dj(I), 
_ ,0 
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1076 YONGMIAO HONG AND JIN LEE 

where we used the fact that 21 e i2mk/21 - 2i if m - 2 Jq,q E Z and 

Ek, e 0 otherwise (e.g., Priestley, 1981, (6.19), p. 392). Moreover, the 
last equality in (A.9) follows from ^(-I) =p(l), di(O) = 0, and dj(-I) = dj(l) by 
Lemma A. 1. 

Similarly, we have 

n-I 

7(O) = (21T)-1 + 1-1 E dj(l),3(j). (A.10) 
1=1 

Combining (A.9) and (A.10), we obtain 

n-i 

ir[f(0) -7(0)] = E dj(l)[13(l) - fi(i)]. (A.11) 
1=1 

Because R(0) - R~(O) = Op(n-1/2) given Assumptions A.4 and A.5, it suffices to show 

n-1 

Vn' / (Jn / dj d(1)[R'(1)-R()] oP O. (A.12) 
1=1 

We shall show (A.12) for the case J - oo, where 2-JV,(J) -- VO by Lemma A.2. The 
proof for fixed J is similar, with Vn(J) -* Vo(J), where Vo(J) is as in Theorem 1 (i). 

Put 6, =t /0 and recall u_ - 1. Straightforward algebra yields 

R(l) - R(l) =,Al(') + A2(1) + A3 (1), (A.13) 

where Al(l) = n-1 i t=l+ ut( - t2-1) A2(1) n-' Et1+1(t - u)ut-1, and 

A3(1) n-r t.= et ((t t 1 - )(L- t_1). We first consider AI(l) in (A.13). Noting 
/t = let lo under IlHo, where o02 = E( E ), we have 

n n 

A1l - 2n-1 J ~~1-2 I 7) (-2 -j2)nil 2 A I (1 = ) (J n , U t 2 ( -|?|) + ( S _( n u 8 
t=l+1 t=l+1I 

= u Ai11(l) + 2oA12 (1) ( 0-) 13 (1) 

where AI1(l) - n 
- 

t= u(t-i - t-1) ,A12() - n- zt=i+ Ut-t-n(kt-I Et-i), 

and A13(l) n-1 Et ul+lUtfit7. By the Cauchy-Schwarz inequality, the mean value 
theorem, Assumptions A. 1, A.4, and A.5, and Lemma A. 1 (iv), we have 

n-I n-I n 1/2 

dj (1)A' I(1) 1b - bo 112 dj d(1)| n 
- ut2 

[n- E 8su g(Xt b) 
t=l bEBlta 
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ONE-SIDED TESTING FOR ARCH EFFECTS 1077 

Next, by a second-order Taylor expansion and Assumptions A.1, A.4, and A.5, we 
have 

n-I n-1 n 

E dJ(l)A12(1) ?1 b- bojE dj(1)j n-1 E ut- g(Xt,bO) 
1 1 t=l ab 

n-I 

11 |b-o|2 
' 

d(I7 + b - bo b ddd(l)] 

2 a 

t=1 b(EB0 abab' ' 

= Op(2 /n) (A.15) 

by Markov's inequality and Lemma A. 1 (iv), where we used 
E n- Etn= ut st- (alab) g (Xt, bo)l= O(n 1) given E(ut lIt0i) = 0 a.s. and Xt GE t-I 
as in Assumption A.4. Finally, we have 

n-I 

dj(l)A'13(l ) =0 (2Jln 1/2) (A.16) 
1=1 

by Markov's inequality and supO<j<n EA 13 () O(n-1), which follows from 
E(utf1t_1) = 0 a.s. and Assumption A.1. Combining (A.14)-(A.16) and 2 -o= 

OP(n-1/2), we obtain 

n-I 

E dj(I)A1(l) = Op(2j/n). (A.17) 
1=1i 

Similarly, for the second term A2(l) in (A.13), we have 

n-I 

dj(I )A'2(l ) = Op (2 Jln). (A.18) 
1=1i 

Finally, we consider the last term A3(1) in (A.13). As shown in Hong (1997, p. 272), 

Supo<1<n1 A3(I) ? ' n- - 0 n=1 Op (n - 1'). This and Lemma A. 1 (iv) imply 

n-I n-I 

d d(Il)A3(l) ? sup |A3(1) 
I 

= Op(2jln) (A.19) 
1=1 0<l<n 1= 

Combining (A.17)-(A.19) and 2-JVn(J) * V0 yields vn n/2fl1/2Y=1dj(l)[R(l) - 

R(l)] -P 0 given 2J/n -* 0. This completes the proof for (A.12) and thus for 
Theorem A. 1. 

Proof of Theorem A.2. Put W --1_1 dj(l)R(I)/R(0). By (A.10), we have 

K[f(O) - (2i)-i] = Wv? [R(0)/Rj(0) - I]VWi= Wv+ op(WVi) (A.20) 

given R(0) - R(0) = Op(n-1/2) by Assumption A.1 and HEo. Write 
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1078 YONGMIAO HONG AND JIN LEE 

where W, - R -(0) u, dj(1)u, 1. Observe that {Wt, F} is an adapted martingale 
difference sequence, where JF is the sigma field consisting of all u, s < t. Thus, from 
(A.21), we obtain 

n n t-1 n 

Var(n1/2W) - 2 E dJ2(1) = (1 - l/n)d2(1) = Vn(J). (A.22) 
t==2 t=2 1=1 1=1 

By Hall and Heyde's (1980, pp. 10-11) martingale theorem, Vn /2(J)nl/2V Od 

N(0,1) if 

n 

Vn-1(J)n-1 , E{Wt21[f Wt > qn 1/2VV1/2(J)]} j * 0 for any -j > 0, (A.23) 
t=2 

n 

Vn 1(J)n-' 1: E E(t| St_1) 1 (A.24) 
t=2 

For space, we shall show the central limit theorem for W for large J (i.e., J -* oo). The 
proof for fixed J is similar and simpler because dj(l) is finite and summable. 

Given (A.22) and Lemma A.2, we shall verify condition (A.23) by showing 
22Jn2 7t= EWt4 - 0. Put ,A4 E(u t). By Assumption A.1, we have 

EW4 = R4(0)E EdJ(l)utl 
-1=1 

t-1 t-1 1-1 
= 2 -4 (0) E dj4(l) + 64 R-2 (0) dJ2(I )dJ2(h) 

1=1 1=2 h=1 

n-1 2 

3 /t2R -4(0) E 2(l) 

It follows from Lemma A.2 that 22Jn2 t= EWt4 = O(n-1), ensuring (A.23). 
Next, givenLemmaA.2, it suffices for (A.24) if 22JVar[n-1 t2E(W72|1)] - 0. 

By the definition of Wt, we have 

E(Wjjf|yg1) = R'1(0) L E dJ(l )ut,1 

t-1 

=R?1t0 +R d(l)d(l)[u71 - R(0)] 
1=1 

t-l 1-1 

+ 2R1-(0) E dJ(l)dJ(h)ut-lUt-h 
1=2 h=l 

-EW12 + R-1 (0)At + 2R-' (0)Bt, say. 

It follows that 

n n n 

[(WV72>) - W241] =R-'(0)n1 -1+2 1 (0)n-1 Y, Bt n-l E [E(Wt |t_1) - E t] =R On-l Y,At + 2R-lOnlEB 
t=2 t=2 t=2 

R1(0)A + 2R'-(0)B, say. (A.25) 

This content downloaded from 128.84.125.184 on Fri, 22 Nov 2013 14:11:12 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ONE-SIDED TESTING FOR ARCH EFFECTS 1079 

Whence, it suffices to show 2 2[Var(A) + Var(B)] - 0. First, noting that A, is a 
weighted sum of independent zero-mean variables {u_ - R(0)}, we have EA= - 

R2(0)]>_ d4(l). It follows by Minkowski's inequality and Lemma A.l (iv) that 

n 2 ~ n-I 

EA2 ?n Ll -(EAD1/21 ? ,?R2(0)][E dj(1) = 0(2J). (A.26) 

Next, we consider Var(B). For all t > s, we have 

t-1 12-1 s-1 11-1 

EBtBs = R 2(0) E I I I dj(ll)d2(hl)dJ(12)dJ(h2)8t-hl,s-h26t-11,S-12 
12=2h2=1 11=2hl=1 

t-1 I-1 

= R2(0) E E dj(t - s + I)dj(t - s + h)dj(l)dj(h), 
1=2 h=1 

where, as before, 8j,h = 1 if h j and j, h = 0 otherwise. It follows that 

n t n-i n-I 1-1 

EB2 ? 2n-2 Y EBtBs- 2R2(0)n' I E dj(r + l)dj(7 + h)dj(l)dj(h)t 
t=3 s=2 r=O 1=2 h=1 

n-1 n-1 2 
? 2R2 (0)n1 L- dJ1 (T) j(l) = 0(23J/n) (A.27) 

by Lemma A.l (iv). Combining (A.25)-(A.27) yields 2-2J[Var(A) + Var(B)] = 0(2-J + 
2J/n) -* 0 given J -* oo, 2J/n -* 0. Thus, condition (A.24) holds. By Hall and Heyde 
(1980, pp. 10-11) Vn1/2(J)nl/2V d N(0,1). This completes the proof. 

Proof of Theorem 2. Put R (l )- 7 (?t/o - l)(6t /o -1), where oJ = 

E(e2) under IHI(a,). Because 8t/Coo - e under H,l(an), we have R(l) 0 R(l), where, 
as before, R(l) n-l tn=ji+IUtUt_Jjj and u1 t- 1 as before. Under 1Hln(a,), 
we have 

t2/0.2 = e2 I + an f,pl(672 1-1)1 (A.28) 

We now define 

2j 2i 

f(O) - I crjk"Tjk(O), 
j=Ok=l 

where 6i, (2)1) > ,5 *k(l)"jk(l) and p(l) - (l)/R(O). Writef(0) - (2r)-' - 

f(0) - f(0) + f(0) - (27r)-1. The proof of Theorem 2 consists of Theorems A.3 and 
A.4, which follow. 
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1080 YONGMIAO HONG AND JIN LEE 

THEOREM A.3. Vn l/2(J)nl/2[f(O)-f(O)] -" 0 

THEOREM A.4. V71/2(J)n '2[f(0)-(27)-1 ] dN(fl), where ft ( un- 
der Theorem 2(i) and ft-=t under Theorem 2(ii). 

Proof of Theorem A.3. The proof is analogous to that of Theorem A. 1 with the more 
restrictive condition J -* oo, 22J/n -* 0. We omit it here for the sake of space. 

Proof of Theorem A.4. We shall only show results for the case J -4 oo. Because 
i[(0) - (27)-i] >27Jjdj(l)R(l), it suffices to show 

n-I 

V-1/2 1)n/2 dj(1)1R(I)IR(O) Nd N(u,l). (A.29) 
1=1 

Recall that u, = t7 - 1 and put V t 8ju_j. By (A.28) and (A.29) and IHIn(an), 
we have 

n 

R(l ) = n -1 E (t2 ht /lo-2-1) (et2 lht-Ilo/02 -1) 
t=l+ l 

n 

= n- E (Ut + anVt)(Uti + anVt-1) 
t=l+ l 

n n n n 

= n-l UtUt_ + ann1 E Vtut-, + a n-1 1: utVt-l + a 2 n-1 E VtV,-_ 
t=l+ I t=l+ I t=1+ 1 t-1+ 1 

=-R(l) + anA4(l) + anA5(l) + anA6(), say, (A.30) 

where R(l) n-il E,1111+ Utut 11, as before. Now, put Vj(l), = For 
the second term A4(1) in (A.30), we have 

n-I n-1 n oo \ 

E dj(l)A4(l) = 
' 

dj(I) n-( )n i 2 ,8jut_jut,_l) 
1=1 1=1 t==+I j= / 

n-I n-I n 

= R(0) E dj(l)(1 - l/n)13, + E dj(l)/31 n- E e2[[u72 I-R(0)]} 
1=1 11 t=1+1 

n-I n 

+ 'Y dj(1)I8 n-l Y, Vt(l)ut-, 
1=1 t=l+l 

co 

= R (0) 8 I1 + p (2 J/21n 1/2), (A.31) 

where nd1(l dj()(1 - 1/n)/,8 - 81 < oo as J -* oo by Lemma A.3 and domi- 
nated convergence, and IE1=, dj(l)/3i{n- -7 t= t [u7_ - R(O)]}l = Op(2J/2/ni/2) 
by the Cauchy-Schwarz inequality, Lemma A. 1 (iv), 7' ,38 < oo, and 
Eln-1 En>,+j72[u2I - R(0)]12 ' Cn given Assumption A.1. In addition, we also 
used the fact that En 

I dj (1), [n 
- 

+ Vt (I) t- Op(2 12/n12) given indepen- 
dence between Vt(1) and ut1,. 
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ONE-SIDED TESTING FOR ARCH EFFECTS 1081 

Similarly, for the third term A5(1) in (A.30), we have 

n-i 

dj (1)A'5(l1 )-Op(2 J/2 In 1/2 ) (A.32) 
1=1 

by the Cauchy-Schwarz inequality, Lemma A. I (iv), and EA2(l) ? Cn - given indepen- 
dence between u, and V,_1 for 1 > 0. 

Finally, for the last term A6(1) in (A.30), we put Rv(1) Cov(V,, V, 1). Then 

n-I n-I n-I 

dJ(0 '6(1) = dj(I)Rv(l) + E dJ(')[ '6(1)- ()] 
1~=1 1~=11= 

Because V, = Ej=P(4Qut_) is a linear process with zJ:L|jB1j < oo and 
E ( 2U )4 < oo, we have EJ - - m 

- 
- _ I k (0, j, m, 1) I < xo, where k (0, j, m, 1) 

is the fourth order cumulant of {Vt, Vt+j, Vt+m, Vt+j} (see, e.g., Hannan 1970, p. 211). It 
follows that supo<1<nVar[A6(1)] ? Cn-' by Hannan (1970, (5.1)). Consequently, we 
obtain jE7jdj(1))[A6() - RV()]l ? Enij?dj(l) |A6(1) - Rv(l)j = Op(2J/ni/2) by 
Markov's inequality and Lemma A.l(iv). On the other hand, because Rv(l) is abso- 
lutely summable (i.e., E'2'=_)jRv(l1)I < oc), it follows from Lemma A.3 that 
E n-1 dj(l)Rv(l) 1 E1=1 RV(1) < oo as J -* oo. Therefore, we have 

n-I 

E dj(l)A6 = Op(M) (A.33) 
1=1 

given 22 /n - 0. Combining (A.30)-(A.33), an = 2J/2/n1'2, and 22J/n - 0 yields 

n-I n-I co 

E dj(l)R(1)/R(0) = E dj(l)R(l)/RR(0) + (2J/2/n1/2) 1 /1 + op(2J/2/n1/2). 
Consequently, we have1(A.29)by Theorem A.2.This completes theproof=1 

Consequently, we have (A.29) by Theorem A.2. This completes the proof. U 
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